Analogues of Acylonucleoside Diphosphates. The Synthesis of a Series of Diphosphonate Derivatives of Pyrimidines and Purines

Ann Parkin
SmithKline Beecham Pharmaceuticals, Yew Tree Bottom Road, Epsom, Surrey KT18 5XQ, England

Abstract

The synthesis of a series of (hydroxy) (phosphonomethyl) phosphorylmethoxyalkoxy-pyrimidines and -purines is described. The diphosphonate unit was introduced into suitably functionalised alcohols by use of the reagent (diethoxyphosphinoyl)methyldiethoxyphosphine 13. Mitsunobu coupling of the alcohols 18 and 20 with 1 -hydroxypyrimidines and 9 -hydroxypurines provided a general route to the protected derivatives 23-26, 31, 32, 36, 37, 40 and 41 . Conventional deprotection techniques afforded the pyrimidines 3-8 and purines 9-12 in good overall yields. The antiviral activity of this series of compounds is recorded.

Considerable research effort has recently been directed towards the synthesis and biological evaluation of acyclonucleosides, many of which exhibit antiviral activity. ${ }^{1-6}$ Such compounds generally exert their antiviral effect as triphosphates after undergoing a series of phosphorylations by both viral and cellular enzymes. In the case of the herpes viruses, a number of acyclonucleosides owe their antiviral activity to the selective inhibition of virally specified DNA polymerases by their triphosphates. ${ }^{7-9}$ It has been recognised that metabolically stable forms of acyclonucleoside mono-, di- and tri-phosphates may also interfere with viral replication. ${ }^{10}$

The phosphonomethoxy group is potentially a metabolically stable bioisosteric replacement for phosphate, and a number of phosphonomethoxyalkyl derivatives of purines and pyrimidines are claimed to exhibit broad spectrum antiviral activity against a range of DNA viruses. ${ }^{11} 14$-(2-Phosphonomethoxyethyl)adenine (PMEA) $\mathbf{1}$ is reported to have activity against herpes

1

2
simplex virus type 1 (HSV-1) and against human inmunodeficiency virus (HIV), the aetiologic agent in acquired immunodeficiency syndrome (AIDS). ${ }^{15}$ These analogues exert their major effect after two phosphorylation steps, becoming nucleoside triphosphate analogues which are active mainly as viral DNA polymerase inhibitors. PMEA diphosphate has also demonstrated activity against HSV-1 encoded ribonucleotide reductase, the enzyme which catalyses the reduction of all four ribonucleoside 5^{\prime}-diphosphates. ${ }^{16}$ We have recently described the synthesis of phosphonomethoxyalkoxypurines ${ }^{17-19}$ and pyrimidines ${ }^{20}$ which show activity against several strains of herpes virus and against some lentiviruses.

Research into analogues of nucleoside diphosphates has been more limited. Such species have also the potential to interfere with viral replication as inhibitors of the enzyme ribonucleotide reductase or, after metabolic phosphorylation to a triphosphate form, as DNA polymerase inhibitors. A number of bioisosteric replacements for the diphosphate linkage have been suggested, but as yet no antivirally active nucleoside analogues have been reported. ${ }^{10}$ Phosphonoformic acid and phosphonoacetic acid exhibit antiherpes activity as viral DNA polymerase inhibitors, by interfering with the pyrophosphate binding site on viral

DNA. ${ }^{21}$ However, phosphonoformyl or phosphonoacetyl derivatives of nucleosides or acyclonucleosides do not represent metabolically stable species, being prone to cleavage by cellular esterases into the component molecules. ${ }^{22}$

In the phosphonophosphinoyl system 2 a methylene unit replaces the bridging oxygen of a diphosphate unit. ${ }^{23.24}$ Isoprenoid (phosphinoylmethyl)phosphonates have been shown to act as inhibitors of squalene synthetase, by virtue of their resemblance to the natural substrate farnesyl diphosphate (FPP). ${ }^{25.26}$ By analogy, a similar replacement of diphosphate in a nucleoside diphosphate should afford a stable analogue with the potential for inhibiting enzymes essential for viral replication.

In this publication, the synthesis of a series of (hydroxy)-(phosphonomethyl)phosphorylmethoxyalkoxy-pyrimidines
and -purines, 3-12, novel analogues of acyclonucleoside

diphosphates, is described. A generalised route to these compounds, involving Mitsunobu coupling of suitably functionalised alcohols with 1-hydroxypyrimidines and 9-hydroxypurines has been developed.

Results and Discussion

We have recently developed an efficient synthesis of 1phosphonomethoxyalkoxypyrimidines by the coupling of functionalised alcohols with 1-hydroxypyrimidines using tri-phenylphosphine-diethyl azodicarboxylate (DEAD) in N, N dimethylformamide (DMF). ${ }^{20}$ Under these conditions reasonable yields of 1 -alkoxy derivatives are obtained, and it is unusual to see products derived from substitution at other positions on the pyrimidine ring. This synthetic methodology was applied to the preparation of the uracil and thymine derivatives $3-6$.
The requisite alcohols 18 and 20 were obtained by means of an Arbuzov reaction of 1-acetoxy-2-bromomethoxyethane ${ }^{27} 14$ or 1,3-dibenzyloxy-2-chloromethoxypropane $\mathbf{1 5}^{17,19}$ with the air and moisture sensitive reagent (diethoxyphosphinoyl)methyldiethoxyphosphine 13 (Scheme 1). ${ }^{25.28}$ The protected

alcohols 16 and 17 were obtained in 56 and 52% yields respectively. Deprotection of 16 with aqueous ethanolic hydrogen chloride afforded the alcohol 18 in 80% yield. Debenzylation of $\mathbf{1 7}$ by catalytic hydrogenolysis afforded an 85% yield of the diol 19 which was converted into the monoacetate 20 in 84% yield by treatment with trimethylorthoacetate and acidic hydrolysis of the intermediate orthoester.

Treatment of 1-hydroxyuracil 21^{29} or 1-hydroxythymine 22^{30} with a 10% excess of the alcohol 18 , triphenylphosphine and DEAD in DMF gave 23 and 24 in yields of 80 and 49% respectively. Under similar conditions the branched chain compounds 25 and 26 were obtained in 28% yields. Deprotection of the acetoxy group in compounds 25 and 26 was carried out using aqueous ethanolic hydrogen chloride. This method afforded compounds 27 and 28 in 90 and 68% yields respectively, and was preferable to the more general techniques of deprotection using catalytic sodium methoxide in methanol or treatment with ammonia, ${ }^{20}$ which gave very poor yields of products in this series of compounds. The phosphonic acids 3-6 were obtained in $60-73 \%$ yields by reaction of 23, 24, 27 and 28 with an excess of trimethylsilyl bromide in dichloromethane (Scheme 2).

In general, a convenient method for the preparation of cytosine derivatives is treatment of the corresponding uracil

21; $R=H$ 22; $R=M e$

27; $R=H(90 \%)$
28; $R=M e(68 \%)$

3; $R=H$ (67\%)
4; $\mathrm{R}=\mathrm{H}$ (73\%)
5; $R=M e(68 \%)$
6; $R=M e(60 \%)$

Scheme 2
analogue with 1,2,4-triazole-(4-chlorophenyl)-phosphodichloridate, and ammonolysis of the intermediate 4-triazolo derivatives. ${ }^{31-33.20}$ These conditions did not prove suitable for the conversion of 23 into a cytosine analogue, as in each step very low yields of impure products were obtained, with evidence of extensive polymerisation. A method of obtaining a cytosine analogue by direct alkylation was clearly required. Attempted alkylation of 1-hydroxycytosine ${ }^{34}$ using Mitsunobu conditions was unsuccessful, but similar treatment of the 4-benzamido derivative 30 (obtained by treatment of 1-benzyloxycytosine ${ }^{34}$ with benzoic anhydride followed by hydrogenolysis of $\mathbf{2 9}$ over 10% palladium on charcoal) gave compounds $\mathbf{3 1}$ and $\mathbf{3 2}$ in 83 and 71% yields respectively (Scheme 3). The benzamido group in 31 and 32 was removed by treatment with aqueous ethanolic hydrogen chloride, giving 33, and (by concomitant removal of the acetoxy group in 32), 34 in 76 and 67% yields respectively. Treatment of 33 and 34 with trimethylsilyl bromide gave the phosphonic acids 7 and 8 in high yields.

The preparation of 2-(bis-tert-butoxycarbonyl)amino-9-hydroxy-6-methoxypurine 35, and 9-hydroxy-6-phthalimidopurine 39 , and their utility in the synthesis of 9 -alkoxy

Scheme 3
derivatives of guanine and adenine both by alkylation with alkyl halides under base catalysed conditions, and with alcohols under Mitsunobu conditions has recently been reported. ${ }^{35}$ The latter conditions were applied for the synthesis of this series of purine analogues.

Thus, treatment of $\mathbf{3 5}$ with the alcohols $\mathbf{1 8}$ and $\mathbf{2 0}$ in DMF as described previously (using a 20% excess of reagents) afforded the derivatives 36 and 37 in 50 and 70% yields respectively. Compound 36 was directly converted into the phosphonic acid 9 in 93% yield by treatment with trimethylsilyl bromide in dichloromethane (Scheme 4). Compound 37 was deprotected in two stages, initially by treatment with aqueous ethanolic hydrogen chloride to give 38 in 78% yield, and subsequently with trimethylsilyl bromide to give $\mathbf{1 0}$ in 32% yield.

In a similar fashion the protected adenine analogues $\mathbf{4 0}$ and 41 were obtained from 9-hydroxy-6-phthalimidopurine 39 in 67 and 78% yields respectively (Scheme 5). It was found to be essential in compound 41 to remove the phthalimido protecting group using basic conditions before carrying out the acidic deprotection of the acetoxy group, since the phthalimido group was prone to partial cleavage even under very mild acidic conditions. The ring-opened amide thus formed was then very resistant to complete deprotection. Thus treatment of $\mathbf{4 0}$ and 41 with methylhydrazine afforded 42 and 43 in 67 and 86% yields. The acetoxy group in $\mathbf{4 3}$ was removed by treatment
with ethanolic hydrogen chloride, giving 44 in 95% yield, and 42 and 44 were deesterified in the usual fashion to afford the phosphonic acids $\mathbf{1 1}$ and $\mathbf{1 2}$ in 61 and 73% yields respectively.

Compounds 3-12 were screened against viruses of the herpes family and visna virus, a lentivirus related to HIV. In the herpes screens the cytosine derivative $\mathbf{8}$ showed activity against herpes simplex virus type 1 (HSV-1) at $30 \mu \mathrm{~g} \mathrm{~cm}^{-3}$, and the guanine analogue 9 showed activity against varicella zoster virus (VZV) at $19 \mu \mathrm{~g} \mathrm{~cm}^{-3}$. The adenine derivative $\mathbf{1 1}$ was active against visna virus, at $0.3 \mu \mathrm{~g} \mathrm{~cm}^{-3}$.

Experimental

IR spectra were recorded on a Perkin-Elmer 580 or Bio-Rad FTS spectrometer; UV spectra were obtained on a Cary 219 spectrometer. NMR spectra were obtained on JEOL GX270 and Bruker AM 400 spectrometers, J values are given in Hz . Mass spectroscopy was performed using a JEOL SX-102 instrument operating at 70 eV . M.p.s were determined using a Reichert-Koffler apparatus and are uncorrected. Elemental analysis was carried out on a CC440 Elemental Analyser. Organic solutions of products were dried using magnesium sulphate and chromatography was performed on Merck 7736 60 H silica gel. All compounds were homogeneous by TLC on silica gel $60 \mathrm{~F}_{254}$ coated aluminium sheets.

General Procedure for the Preparation of Compounds 16 and 17.-The bromo or chloro ether $\mathbf{1 4}$ or $\mathbf{1 5}(1 \mathrm{mmol})$ under nitrogen was treated with (diethoxyphosphinoyl)methyldiethoxyphosphine (1 mmol) via a septum, with evolution of heat. The mixture was heated at $120^{\circ} \mathrm{C}$ under a slow stream of nitrogen for 18 h , and then at $180^{\circ} \mathrm{C}$ for 15 min . After cooling, the product was chromatographed on silica gel eluting with chloroform-methanol ($30: 1$).
Diethyl [2-Acetoxyethoxymethyl(ethoxy)phosphoryl]methylphosphonate 16 was obtained as an oil in 56% yield (14 mmol scale); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3449,2984,2940,2910,1739,1654$ and 1446; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.36\left(9 \mathrm{H}, \mathrm{t}, J 7.1,3 \times \mathrm{CH}_{3}\right), 2.08(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCCH}_{3}\right), 2.47\left(1 \mathrm{H}\right.$, ddd, $J_{\mathrm{H}, \mathrm{H}} 15.4, J_{\mathrm{H} . \mathrm{P}} 20.6$ and $J_{\mathrm{H} . \mathrm{P}} 17.9, \mathrm{H}_{\mathrm{B}}$ of $\left.\mathrm{PCH}_{2} \mathrm{P}\right), 2.56\left(1 \mathrm{H}, \mathrm{ddd}, J_{\mathrm{H} . \mathrm{H}} 15.4, J_{\mathrm{H} . \mathrm{P}} 20.6\right.$ and $J_{\mathrm{H} . \mathrm{P}} 16.8, \mathrm{H}_{\mathrm{A}}$ of $\left.\mathrm{PCH}_{2} \mathrm{P}\right), 3.82\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OAc}\right), 3.93\left(1 \mathrm{H}, \mathrm{ddd}, J_{\mathrm{H}, \mathrm{H}} 13.5, J_{\mathrm{H} . \mathrm{P}}\right.$ 7.6 and $J_{\mathrm{H}, \mathrm{P}} 7.7, \mathrm{H}_{\mathrm{D}}$ of $\left.\mathrm{PCH}_{2} \mathrm{O}\right), 4.00\left(1 \mathrm{H}\right.$, ddd, $J_{\mathrm{H}, \mathrm{H}} 13.5, J_{\mathrm{H}, \mathrm{P}}$ 7.6 and $J_{\mathrm{H} . \mathrm{P}} 7.7, \mathrm{H}_{\mathrm{C}}$ of $\left.\mathrm{PCH}_{2} \mathrm{O}\right)$ and $4.20\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OCOCH}_{3}\right.$ plus $3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}$) (Found: C, 39.6; H, $7.6 \% ; \mathrm{M}^{+}, 360.1073$. $\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{O}_{8} \mathrm{P}_{2} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 39.5 ; \mathrm{H}, 7.3 \% ; M, 360.1103$).
(R, S)-Diethyl \quad [2-(Benzyloxy-1-benzyloxymethyl)ethoxy methyl(ethoxy)phosphoryl]methylphosphonate 17 was obtained

35

36; $R=H(50 \%)$
37; $R=\mathrm{CH}_{2} \mathrm{OAC}(70 \%)$

38; $\mathrm{R}=\mathrm{CH}_{2} \mathrm{OH}(78 \%)$

Scheme 4

39
40; $R=H$ (67\%)
41; $\mathrm{R}=\mathrm{CH}_{2} \mathrm{OAC}(78 \%)$

11; (61\%)

42; $R=H(67 \%)$
43; $\mathrm{R}=\mathrm{CH}_{2} \mathrm{OAc}$ (86%)

12; (73\%)

44; (95\%)

Scheme 5
as an oil in 52% yield (30 mmol scale); $\mathrm{v}_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3453$, 3214, 3064, 3033, 2984, 2906, 2867, 1497, 1477 and 1454; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.31\left(9 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{3}\right), 2.55\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2} \mathrm{P}\right), 3.60$ $\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{CH}\right), 3.88(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 4.15(8 \mathrm{H}, \mathrm{m}, 3 \times$ $\left.\mathrm{CH}_{2}, \mathrm{PCH}_{2} \mathrm{O}\right), 4.52\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.53\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right)$ and $7.32(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph})$ (Found: C, $54.2 ; \mathrm{H}, 7.2 \% ; \mathrm{M}^{+}$, $528.2050 . \mathrm{C}_{25} \mathrm{H}_{38} \mathrm{O}_{8} \mathrm{P}_{2} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 54.05 ; \mathrm{H}, 7.4 \% ; M$, 528.2042)

Diethyl[2-Hydroxyethoxymethyl(ethoxy)phosphoryl]methylphosphonate 18.-A solution of compound $16(1 \mathrm{~g}, 2.8 \mathrm{mmol})$ in ethanol ($10 \mathrm{~cm}^{3}$) and hydrochloric acid ($2 \mathrm{~mol} \mathrm{dm}{ }^{-3}, 3 \mathrm{~cm}^{3}, 6$ mmol) was heated at reflux for 2 h . The solvent was removed under reduced pressure and the residue was chromatographed on silica gel, eluting with chloroform-methanol (20:1) to give the title compound 18 as an oil $(0.7 \mathrm{~g}, 80 \%) ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ $3420,2984,2935,2909,2136,1654,1480$ and 1445 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.36\left(9 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{3}\right), 2.49\left(1 \mathrm{H}\right.$, ddd, $J_{\mathrm{H}, \mathrm{H}} 15.1, J_{\mathrm{H}, \mathrm{P}}$ 18.7 and $21.2, \mathrm{H}_{\mathrm{B}}$ of $\left.\mathrm{PCH}_{2} \mathrm{P}\right), 2.60\left(1 \mathrm{H}\right.$, ddd, $J_{\mathrm{H} . \mathrm{H}} 15.1, J_{\mathrm{H}, \mathrm{P}} 17.9$ and $J_{\mathrm{H} . \mathrm{P}} 20.6, \mathrm{H}_{\mathrm{A}}$ of $\left.\mathrm{PCH}_{2} \mathrm{P}\right)$ and $3.6-4.3(13 \mathrm{H}, \mathrm{m}, 4$ $\times \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{OH}, \mathrm{PCH}_{2} \mathrm{O}$, plus $\mathrm{D}_{2} \mathrm{O}$ exchangeable OH) (Found: $\mathrm{C}, 37.2 ; \mathrm{H}, 7.90 \% ; \mathrm{M}^{+}$, 318.0998. $\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{O}_{7} \mathrm{P}_{2}$. $0.25 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 37.2 ; \mathrm{H}, 7.65 \% ; M, 318.0997$).
(R,S)-Diethyl (2-Hydroxy-1-hydroxymethyl)ethoxymethyl (ethoxy)phosphoryl]methylphosphonate 19.-A solution of compound 17 ($7.5 \mathrm{~g}, 14 \mathrm{mmol}$) in 90% aqueous ethanol (150 cm^{3}) and hydrochloric acid ($5 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 1.5 \mathrm{~cm}^{3}$) was treated with 10% palladium-charcoal catalyst (500 mg). The mixture
was hydrogenated at atmospheric pressure and room temperature for 3 h , filtered through a glass fibre filter pad and then evaporated under reduced pressure. The residue was chromatographed on silica gel to give the title compound 19 as an oil (4.2 $\mathrm{g}, 85 \%$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3380,2984,2934,2909,1725,1654$, 1479 and $1444 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.85\left(9 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{3}\right), 2.57(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{PCH}_{2} \mathrm{P}\right)$ and $3.1-4.4\left(15 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{PCH}_{2} \mathrm{O}, \mathrm{CH}\right.$, $2 \times \mathrm{CH}_{2} \mathrm{OH}$ plus $2 \times \mathrm{D}_{2} \mathrm{O}$ exchangeable OH) (Found: C , 37.55; $\mathrm{H}, 7.55 . \mathrm{C}_{11} \mathrm{H}_{26} \mathrm{O}_{8} \mathrm{P}_{2}$ requires $\mathrm{C}, 37.9 ; \mathrm{H}, 7.5 \%$).
(R,S) Diethyl [(1-Acetoxymethyl-2-hydroxy)ethoxymethyl(ethoxy)phosphoryl]methylphosphonate 20.-A solution of compound $19(0.85 \mathrm{~g}, 2.4 \mathrm{mmol})$ and toluene-4-sulphonic acid (50 mg) in trimethyl orthoacetate $\left(10 \mathrm{~cm}^{3}\right.$) was stirred at room temperature for 1 h . The solvent was evaporated under reduced pressure and the residue was dissolved in 50% acetic acid and stirred at room temperature for 30 min . The solvent was evaporated under reduced pressure and the residue was chromatographed on silica gel, eluting with chloroformmethanol ($20: 1$) to give the title compound 20 as an oil $(0.8 \mathrm{~g}$, 84%); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3393,2984,2938,2908,1740,1653,1561$, 1479 and $1444 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.36\left(9 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{3}\right), 2.07$ and $2.08\left(3 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{OCH}_{3}\right), 2.55\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2} \mathrm{P}\right)$ and $3.5-4.53(14$ $\mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{PCH}_{2} \mathrm{O}, \mathrm{CH}, \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CH}_{2} \mathrm{OAc}$, plus $\mathrm{D}_{2} \mathrm{O}$ exchangeable OH) (Found: $\mathrm{C}, 39.0 ; \mathrm{H}, 7.3 \% ; \mathrm{M}^{+}, 390.1211$. $\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{O}_{9} \mathrm{P}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ requires C. $39.1 ; \mathrm{H}, 7.3 \% ; M, 390.1209$).

General Procedure for the Preparation of Compounds 23, 24, 25, 26, 31, 32, 36, 37, 40 and 41.-A mixture of compound 21, 22,

30, 35 or 39 (1 mmol), alcohol 18 or $20(1 \mathrm{mmol})$, and triphenylphosphine $\left(\mathrm{Ph}_{3} \mathrm{P}\right)(1.1-1.5 \mathrm{mmol})$ in dry DMF or tetrahydrofuran (THF), cooled to $0{ }^{\circ} \mathrm{C}$, was treated with diethyl azodicarboxylate (DEAD) (1.1--1.5 mmol). After being stirred for 18 h at room temperature, the mixture was evaporated under reduced pressure and the residue was purified by chromatography on silica gel.

1-\{2-[(Diethoxyphosphorylmethyl)(ethoxy)phosphorylmethoxy]ethoxy; uracil 23. This compound was obtained as a gum in $80^{\circ}{ }_{0}$ yield [4.8 mmol scale, solvent DMF ($20 \mathrm{~cm}^{3}$) using 1.2 equiv. of $\mathrm{Ph}_{3} \mathrm{P}$ and DEAD] after chromatography, eluting with chloroform; $v_{\max }(f i l m) / \mathrm{cm}^{-1} 3162,3050,2985,2948,2907$, $2818,1730,1686,1624,1479,1446$ and $1418 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.36$ $\left(9 \mathrm{H} . \mathrm{m}, 3 \times \mathrm{CH}_{3}\right), 2.50\left(1 \mathrm{H}\right.$, ddd, $J_{\mathrm{H} . \mathrm{H}} 15.4, J_{\mathrm{H} . \mathrm{P}} 17.3$ and $J_{\mathrm{H} . \mathrm{P}}$ 17.6. H_{B} of $\left.\mathrm{PCH}_{2} \mathrm{P}\right), 2.57,\left(1 \mathrm{H}\right.$, ddd, $J_{\mathrm{H} . \mathrm{H}} 15.4, J_{\mathrm{H} . \mathrm{P}} 17.6$ and $J_{\mathrm{H} . \mathrm{P}}$ $17.9, \mathrm{H}_{\mathrm{A}}$ of $\left.\mathrm{PCH}_{2} \mathrm{P}\right), 3.89\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{ON}\right), 4.02(2 \mathrm{H}, \mathrm{d}, J$ 7.1, $\left.\mathrm{PCH}_{2} \mathrm{O}\right), 4.28\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.38(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{ON}\right), 5.59(1 \mathrm{H}, \mathrm{d}, J 8,5-\mathrm{H}), 7.80(1 \mathrm{H}, \mathrm{d}, J 8,6-\mathrm{H})$ and 9.01 ($1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}$ exchangeable NH) (Found: C, 38.2; H, 6.3; N, 6.0. $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{9} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 38.45 ; \mathrm{H}, 6.2 ; \mathrm{N}, 6.4 \%$).

1-2-[(Diethoxyphosphorylmethyl)(ethoxy)phosphorylmethoxy]e thoxy; thymine 24. This compound was obtained as a gum in $49^{\circ}{ }_{\text {o }}$ yield [1.8 mmol scale, solvent DMF ($10 \mathrm{~cm}^{3}$), using 1.2 equiv. of $\mathrm{Ph}_{3} \mathrm{P}$ and DEAD] after chromatography eluting with chloroform-methanol (50:1); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3160,3044$, 2985, 2933, 2907, 2816, 1721, 1687, 1460, 1444 and 1418 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.37\left(9 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{3}\right), 1.93(3 \mathrm{H}, \mathrm{d}, J 1.1,5-$ $\left.\mathrm{CH}_{3}\right), 2.50\left(1 \mathrm{H}\right.$, ddd, $J_{\mathrm{H} . \mathrm{H}} 15.4, J_{\mathrm{H} . \mathrm{P}} 17.6$ and $J_{\mathrm{H} . \mathrm{P}} 20.8, \mathrm{H}_{\mathrm{B}}$ of $\left.\mathrm{PCH}_{2} \mathrm{P}\right), 2.58\left(1 \mathrm{H}\right.$, ddd, $J_{\mathrm{H} . \mathrm{H}} 15.4, J_{\mathrm{H} . \mathrm{P}} 17.5$ and $J_{\mathrm{H} . \mathrm{P}} 20.5, \mathrm{H}_{\mathrm{A}}$ of $\left.\mathrm{PCH}_{2} \mathrm{P}\right), 3.89\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{ON}\right), 4.02(2 \mathrm{H}, \mathrm{d}, J 7.1$, $\left.\mathrm{PCH}_{2} \mathrm{O}\right), 4.14 .4\left(8 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{ON}\right), 7.62(1 \mathrm{H}, \mathrm{q}$, $J 1.1,6-\mathrm{H})$ and $8.82\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable NH$)$ (Found: C, 40.7: H, 6.4: N, 6.2. $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{P}_{2}$ requires C, $40.7 ; \mathrm{H}, 6.4 ; \mathrm{N}$, $6.3^{\circ}{ }_{\%}$).
(R,S)-1-\{2-Acctoxymethyl-2-[(diethoxyphosphorylmethyl)(ethoxy)phosphorylmethoxyethoxy uracil 25. This compound was obtained as a gum in 28% yield [0.8 mmol scale, solvent DMF ($5 \mathrm{~cm}^{3}$), using 1.5 equiv. of $\mathrm{Ph}_{3} \mathrm{P}$ and DEAD] after chromatography eluting with chloroform-methanol (30:1); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{1} 3463,3510,3030,2988$, 2907, 2821, 1735, 1686, 1624, 1445 and $1419 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.35(9 \mathrm{H}, \mathrm{m}$, $\left.3 \times \mathrm{CH}_{3}\right), 2.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCCH}_{3}\right), 2.53\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2} \mathrm{P}\right), 4.23$ ($13 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{PCH}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{ON}, \mathrm{CH}_{2} \mathrm{OAc}, \mathrm{CH}$), 5.59 $(1 \mathrm{H}, \mathrm{d}, J 8.25,5-\mathrm{H}), 7.81$ and $7.94(1 \mathrm{H}, 2 \times \mathrm{d}, J 8.25,6-\mathrm{H})$ and 8.67 ($1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}$ exchangeable NH) (Found: C, $40.5 ; \mathrm{H}, 6.2 ; \mathrm{N}, 5.5$. $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{11} \mathrm{P}_{2}$ requires C, $40.8 ; \mathrm{H}, 6.0 ; \mathrm{N}, 5.6 \%$).
(R,S)-1-2-Acetoxymethyl-2-[(diethoxyphosphorylmethyl)(ethoxy)phosphorylmethoxy]ethoxy\}thymine 26. This compound was obtained as a gum in 28% yield [2.1 mmol scale, solvent DMF ($10 \mathrm{~cm}^{3}$), using 1.1 equiv. of $\mathrm{Ph}_{3} \mathrm{P}$ and DEAD] after chromatography eluting with chloroform, increasing polarity to chloroform-methanol $(40: 1) ; \quad v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 3442, 3163, 3101, 3043, 2989, 2932, 2912, 2815, 1740, 1723, 1685, 1462, 1444 and $1417 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.37\left(9 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{3}\right), 1.93$ $\left(3 \mathrm{H}, \mathrm{d}, J 1.1,5-\mathrm{CH}_{3}\right), 2.09$ and $2.10\left(3 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{OCCH}_{3}\right), 2.53$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2} \mathrm{P}\right), 3.95-4.5\left(13 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{PCH}_{2} \mathrm{O}\right.$, $\left.\mathrm{CH}_{2} \mathrm{ON}, \mathrm{CH}_{2} \mathrm{OAc}, \mathrm{CH}\right), 7.61$ and $7.75(1 \mathrm{H}, 2 \times \mathrm{q}, J 1.1,6-\mathrm{H})$ and $8.6\left(1 \mathrm{H} .2 \times\right.$ br s, $\mathrm{D}_{2} \mathrm{O}$ exchangeable NH$)($ Found: $\mathrm{C}, 41.1$; H, 6.3; N, 5.1. $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{11} \mathrm{P}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 41.3 ; \mathrm{H}, 6.4$; N, 5.35%).

4-Benzamido-1-\{ [(2-diethoxyphosphorylmethyl)(ethoxy)phosphorylmethoxy]ethoxy uracil 31. This compound was obtained as a gum in 83% yield [0.95 mmol scale, solvent DMF ($10 \mathrm{~cm}^{3}$), using 1.1 equiv. of $\mathrm{Ph}_{3} \mathrm{P}$ and DEAD] after chromatography eluting with chloroform, increasing polarity to chloroform-methanol (25:1); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} \quad 3444,3218$, 3059, 2987, 2907, 2869, 1695, 1677, 1611, 1584, 1560, 1480, 1449 and 1427; $\dot{\delta}_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.25\left(9 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{3}\right), 2.68(2 \mathrm{H}$,
dd, $J 17.1$ and $\left.20.6, \mathrm{PCH}_{2} \mathrm{P}\right), 3.75-4.2\left(10 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$, $\left.\mathrm{PCH}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{ON}\right), 4.38\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{ON}\right), 7.29(1 \mathrm{H}, \mathrm{d}, J$ $7.4,5-\mathrm{H}), 7.45-8.05\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 8.43(1 \mathrm{H}, \mathrm{d}, J 7.4,6-\mathrm{H})$ and $11.28\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable NH$)$ (Found: C. $46.7 ; \mathrm{H}, 5.95$; $\mathrm{N}, 7.4 . \mathrm{C}_{21} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{P}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 46.7 ; \mathrm{H}, 6.0 ; \mathrm{N}$, 7.8%).
(R,S)-1-\{2-Acetoxymethyl-2-[(diethoxyphosphorylmethyl)-(ethoxy)phosphorylmethoxy]ethoxy'-4-benzamidouracil 32. This compound was obtained as a gum in 71% yield [1.3 mmol scale, solvent DMF ($10 \mathrm{~cm}^{3}$), using 1.1 equiv. of $\mathrm{Ph}_{3} \mathrm{P}$ and DEAD] after chromatography eluting with chloroform, increasing polarity to chloroform-methanol (30:1); $v_{\text {max }}-$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 3460,3191,3130,3064,2983,2905,1741,1685,1613$, 1558,1482 and $1447 ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.25\left(9 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{3}\right)$, $2.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCCH}_{3}\right), 2.62\left(2 \mathrm{H}, \mathrm{dd}, J_{1}=J_{2} 19, \mathrm{PCH}_{2} \mathrm{P}\right), 3.9-$ $4.5\left(13 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{PCH}_{2} \mathrm{O}, \mathrm{CH}, \mathrm{CH}_{2} \mathrm{OAc}, \mathrm{CH}_{2} \mathrm{ON}\right)$, $7.30(1 \mathrm{H}, \mathrm{d}, J 7.7,5-\mathrm{H}), 7.45-8.1\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 8.50$ and $8.52(1$ $\mathrm{H}, 2 \times \mathrm{d}, J 7.7,6-\mathrm{H})$ and $11.30\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable NH$)$ (Found: C, 46.0; H, 5.6; N, 6.5. $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{11} \mathrm{P}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ requires C, $46.4 ; \mathrm{H}, 6.0 ; \mathrm{N}, 6.8 \%$)

2-[N,N-Bis-(tert-butoxycarbonyl)amino $]-9-\{2-[($ diethoxyphosphorylmethyl)(ethoxy)phosphorylmethoxy] ethoxy-6methoxypurine 36. This compound was obtained as a gum in 50% yield [1.3 mmol scale, solvent DMF $\left(10 \mathrm{~cm}^{3}\right)$, using 1.2 equiv. of $\mathrm{Ph}_{3} \mathrm{P}$ and DEAD] after chromatography eluting with chloroform, increasing polarity to chloroform-methanol (30:1); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3074,2983,2937,2909,1793,1759,1573,1447$, 1459 and $1424 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.4\left[27 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ plus $\left.2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.48\left(1 \mathrm{H}\right.$, ddd, $J_{\mathrm{H} . \mathrm{H}} 15, J_{\mathrm{H} . \mathrm{P}} 18.0$ and $J_{\mathrm{H} . \mathrm{P}} 20.8, \mathrm{H}_{\mathrm{B}}$ of $\left.\mathrm{PCH}_{2} \mathrm{P}\right), 2.56\left(1 \mathrm{H}\right.$, ddd, $J_{\mathrm{H} . \mathrm{H}} 15, J_{\mathrm{H}, \mathrm{P}} 17.2$ and $J_{\mathrm{H} . \mathrm{P}} 20.5, \mathrm{H}_{\mathrm{A}}$ of $\left.\mathrm{PCH}_{2} \mathrm{P}\right), 4.1\left(13 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{OCH}_{3}, \quad \mathrm{PCH}_{2} \mathrm{O}\right.$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{ON}\right), 4.6\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{ON}\right)$ and $8.31(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H})$ (Found: C, 44.6; H, 6.7; N, 10.0. $\mathrm{C}_{26} \mathrm{H}_{45} \mathrm{~N}_{5} \mathrm{O}_{12} \mathrm{P}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ requires C, 44.6; H, 6.8; N, 10.0%).
(R,S)-9-\{2-Acetoxymethyl-2-[(diethoxyphosphorylmethyl)(ethoxy)phosphorylmethoxy $]$ ethoxy $\}-2-[\mathrm{N}, \mathrm{N}$-bis-(tert-butoxy-carbonyl)amino]-6-methoxypurine 37. This compound was obtained as a foam in 70% yield [1.3 mmol scale, solvent DMF ($10 \mathrm{~cm}^{3}$), using 1.2 equiv. of $\mathrm{Ph}_{3} \mathrm{P}$ and DEAD] after chromatography eluting with chloroform, increasing polarity to chloroform-methanol (40:1); v $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3077,2982,2937$, 1793, 1746, 1594, 1476, 1455 and $1425 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.35(9 \mathrm{H}, \mathrm{m}$, $\left.3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.47\left[9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right], 2.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCCH}_{3}\right)$, $2.55\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2} \mathrm{P}\right), 4.05-4.70\left(16 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$, $\mathrm{PCH}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{OAc}, \mathrm{CH}, \mathrm{CH}_{2} \mathrm{ON}, \mathrm{OCH}_{3}$) and 8.38 and 8.43 (1 $\mathrm{H}, 2 \times \mathrm{s}, 8 \mathrm{H}$) (Found: C, 45.1; H, 6.6; N, 8.9. $\mathrm{C}_{29} \mathrm{H}_{49} \mathrm{~N}_{5} \mathrm{O}_{14} \mathrm{P}_{2}$. $\mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 45.1 ; \mathrm{H}, 6.7 ; \mathrm{N}, 9.1 \%$).

9-\{[2-(Diethoxyphosphorylmethyl)(ethoxy)phosphorylmeth-oxy]ethoxy\}-6-N-phthalimidopurine 40. This compound was obtained as a gum in 67% yield [0.8 mmol scale, solvent THF ($10 \mathrm{~cm}^{3}$), using 1.2 equiv. of $\mathrm{Ph}_{3} \mathrm{P}$ and DEAD] after chromatography eluting with acetone-hexane (1:1) of increasing polarity to acetone; $r_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3465,3094,3065$, 2984, 2938, 2909, 1792, 1762, 1735, 1661, 1600, 1579, 1456, 1447 and 1405; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.36\left(9 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{3}\right), 2.56(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{PCH}_{2} \mathrm{P}\right), 4.14\left(10 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{PCH}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{ON}\right)$, $4.70\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{ON}\right), 7.87(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.04(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $8.63(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$ and $9.07(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$ (Found: C, $45.45 ; \mathrm{H}, 5.15$; $\mathrm{N}, 11.0 . \mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{9} \mathrm{P}_{2} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 45.4 ; \mathrm{H}, 5.3 ; \mathrm{N}$, 11.5%).
(R,S)-9-\{2-Acetoxymethyl-2-[(diethoxyphosphorylmethyl)-(ethoxy)phosphorylmethoxy]ethoxy-6-N-phthalimidopurine 41. This compound was obtained as a gum in 78% yield [1.3 mmol scale, solvent THF ($10 \mathrm{~cm}^{3}$), using 1.5 equiv. of $\mathrm{Ph}_{3} \mathrm{P}$ and DEAD] after chromatography eluting with acetone-hexane (1:1) of increasing polarity to acetone; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3502$, 3462, 3093, 3063, 2984, 2907, 1791, 1732, 1599, 1578, 1455, 1447 and 1404; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.32\left(9 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.11(1 \mathrm{H}, \mathrm{s}$,
$\left.\mathrm{OCCH}_{3}\right), 2.58\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2} \mathrm{P}\right), 4.03-4.8(13 \mathrm{H}, \mathrm{m}$, $\left.3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{PCH}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{OAc}, \mathrm{CH}_{2} \mathrm{ON}, \mathrm{CH}\right), 7.95(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 8.73$ and $8.58(1 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{CH})$ and $9.07(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$ (Found: C, 46.7; H, 5.1; N, 10.1. $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{11} \mathrm{P}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ requires C, 46.5; H, 5.25; N, 10.4%).

4-Benzamido-1-benzyloxyuracil 29.-A mixture of 1-benzyloxycytosine ($4.34 \mathrm{~g}, 20 \mathrm{mmol}$) and benzoic anhydride ($9 \mathrm{~g}, 40$ mmol) in ethanol ($100 \mathrm{~cm}^{3}$) was heated at reflux for 1.5 h . The mixture was treated with additional benzoic anhydride $(9 \mathrm{~g}, 40$ mmol) and heated at reflux for a further 2.5 h . An additional quantity of benzoic anhydride ($9 \mathrm{~g}, 40 \mathrm{mmol}$) was added and the mixture was left to cool for 18 h . The precipitated product was collected by filtration and washed with dry ether, to give the title compound 29 ($5.25 \mathrm{~g}, 82 \%$), m.p. $209-211^{\circ} \mathrm{C} ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $3411,3060,3037,2995,1692,1670,1615,1644,1497,1483,1449$ and 1418; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 5.25\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.12(1 \mathrm{H}, \mathrm{d}, J$ $7.7,5-\mathrm{H}), 7.4-8.1\left(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{C}_{6} \mathrm{H}_{5}\right), 8.27(1 \mathrm{H}, \mathrm{d}, J 7.7,6-\mathrm{H})$ and $11.27\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable NH$)$ (Found: $\mathrm{C}, 66.7 ; \mathrm{H}$, 4.7; $\mathrm{N}, 13.0 . \mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 66.35 ; \mathrm{H}, 4.78$; N, 12.9%).

4-Benzamido-1-hydroxyuracil 30.-A solution of compound $29(1.5 \mathrm{~g}, 4.7 \mathrm{mmol})$ in THF ($75 \mathrm{~cm}^{3}$), water $\left(7 \mathrm{~cm}^{3}\right)$ and saturated methanolic hydrogen chloride ($1 \mathrm{~cm}^{3}$) was treated with 10% palladium-charcoal catalyst $(0.15 \mathrm{~g})$. The mixture was hydrogenated at atmospheric pressure and room temperature for 13 min , filtered through a glass fibre pad and then evaporated under reduced pressure. The residue was crystallised from methanol to give the title compound 30 as a solid (0.66 g , 61%), m.p. $225-227^{\circ} \mathrm{C}$; $r_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3434,3217$, 3150, $3107,3050,2500,1699,1682,1611,1602,1581,1487$ and 1409 ; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 7.26(1 \mathrm{H}, \mathrm{d}, J 7.4,5-\mathrm{H}), 7.4-8.1(5 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 8.36(1 \mathrm{H}, \mathrm{d}, J 7.4,6-\mathrm{H}), 11.2\left(1 \mathrm{H}\right.$, br $\mathrm{s}, \mathrm{D}_{2} \mathrm{O}$ exchangeable) and $11.9\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable) (Found: C, 57.2; $\mathrm{H}, 3.95 ; \mathrm{N}, 18.4 . \mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $\mathrm{C}, 57.1 ; \mathrm{H}, 3.9$; N, 18.2%.

General Procedure for the Preparation of Compounds 42 and 43.-A solution of compound 40 or $41(1 \mathrm{mmol})$ in dichloromethane $\left(10 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ was treated with N methylhydrazine (1.5 mmol), and stirred at $0^{\circ} \mathrm{C}$ for 1 h . The solvent was removed under reduced pressure and the residue was chromatographed on silica gel, eluting with chloroformmethanol (20:1) of increasing polarity (to $10: 1$).

9-\{[2-(Diethoxyphosphorylmethyl)(ethoxy)phosphorylmeth$o x y]$ ethoxy $\}$ adenine 42. This compound was obtained as a gum in 67% yield (0.36 mmol scale); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3408,3336,3258$, 3187, 2985, 2940, 2907, 1648, 1597, 1496, 1470, 1444 and 1411 ; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.23\left(9 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{3}\right), 2.70(2 \mathrm{H}, \mathrm{dd}, J 17.0$ and 20.6, $\left.\mathrm{PCH}_{2} \mathrm{P}\right), 3.7-4.15\left(10 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{PCH}_{2} \mathrm{O}\right.$, $\mathrm{CH} \mathrm{CH}_{2} \mathrm{ON}$), $4.5\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{ON}\right), 7.36\left(2 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable $\left.\mathrm{NH}_{2}\right), 8.15(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$ and $8.39(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$ (Found: C, 37.9; H, 5.5; N, 14.0. $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{P}_{2} \cdot 0.26 \mathrm{CHCl}_{3}$ requires $\mathrm{C}, 38.0 ; \mathrm{H}, 5.7 ; \mathrm{N}, 14.5 \%$).
(R,S)-9-\{2-Acetoxymethyl-2-[(diethoxyphosphorylmethyl)(ethoxy)phosphorylme thoxy]ethoxy\} adenine 43. This compound was obtained as a gum in 86% yield (1 mmol scale); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3334,3260,3184,2982$, 2940, 2905, 1740, 1644, $1595,1468,1440$ and $1410 ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.33(9 \mathrm{H}, \mathrm{m}$, $\left.3 \times \mathrm{CH}_{3}\right), 2.089$ and $2.094\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.60(2 \mathrm{H}, \mathrm{m}$, $\mathrm{PCH}_{2} \mathrm{P}$), 4.05-4.7 (13 H, m, $3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{PCH}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{OAc}$, $\left.\mathrm{CH}_{2} \mathrm{ON}, \mathrm{CH}\right), 5.81\left(2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable $\left.\mathrm{NH}_{2}\right), 8.14$ and 8.26 $(1 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{CH})$ and $8.36(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$ (Found: $\mathrm{C}, 40.9 ; \mathrm{H}, 6.1 ; \mathrm{N}$, 13.1. $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{9} \mathrm{P}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 40.6 ; \mathrm{H}, 6.1 ; \mathrm{N}$, 13.15%).

General Procedure for the Preparation of Compounds 27, 28,

33, 34, 38 and 44.-A solution of compound $25,26,31,32,37$ or 43 in ethanol and hydrochloric acid ($5 \mathrm{~mol} \mathrm{dm}^{-3}$) was heated at reflux for $1.5-4.5 \mathrm{~h}$. The solvent was removed under reduced pressure and the residue was chromatographed on silica gel.

1-\{2-[(Diethoxyphosphorylmethyl)(ethoxy)phosphorylmeth-oxy]-2-hydroxymethylethoxy\}uracil 27. This compound was obtained as a glass in 90% yield $[0.2 \mathrm{mmol}$ scale, using hydrochloric acid (0.4 mmol) in ethanol ($3 \mathrm{~cm}^{3}$)] after 1.5 h and chromatography eluting with chloroform-methanol (20:1); $r_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3388,3044,2987,2940,2908,2821,1733,1686$, $1625,1480,1445$ and $1420 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.37(9 \mathrm{H}, \mathrm{m}$, $\left.3 \times \mathrm{CH}_{3}\right), 2.55\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2} \mathrm{P}\right), \quad 3.5-4.6(14 \mathrm{H}, \mathrm{m}$, $3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{PCH}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CH}_{2} \mathrm{ON}, \mathrm{CH}$, plus $\mathrm{D}_{2} \mathrm{O}$ exchangeable OH$), 5.60(1 \mathrm{H}, \mathrm{s} \times \mathrm{d}, J 8.2,5-\mathrm{H}), 7.62$ and $7.83(1$ $\mathrm{H}, 2 \times \mathrm{d}, J 8.2,6-\mathrm{H})$ and $8.88\left(1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable NH$)$ (Found: C, 38.9; H, 6.2; N, 5.9. $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{P}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 38.55 ; \mathrm{H}, 6.25 ; \mathrm{N}, 6.0 \%$).
(R,S)-1-\{2-[(Diethoxyphosphorylmethyl)(ethoxy)phos-phorylmethoxy]-2-hydroxymethylethoxy $\}$ thymine 28. This compound was obtained as a glass in 68% yield [0.7 mmol scale using hydrochloric acid (1.5 mmol) in ethanol ($5 \mathrm{~cm}^{3}$)] after 2 h and chromatography eluting with chloroform-methanol (10:1); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3410,3180,3040,2985,2935,2910,2815,1715$, $1685,1460,1445$ and $1420 ; \delta_{\mathbf{H}}\left(\mathrm{CDCl}_{3}\right) 1.37,(9 \mathrm{H}, \mathrm{m}$, $\left.3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.93\left(3 \mathrm{H}, 2 \times \mathrm{s}, 5-\mathrm{CH}_{3}\right), 2.55\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2} \mathrm{P}\right)$, 3.5-4.75 ($14 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{PCH}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CH}_{2} \mathrm{ON}$, $\mathrm{CH}_{2} \mathrm{ON}, \mathrm{CH}$, plus $\mathrm{D}_{2} \mathrm{O}$ exchangeable OH$), 7.42$ and $7.65(1 \mathrm{H}$, $2 \times \mathrm{s}, 6-\mathrm{H})$ and $8.60\left(1 \mathrm{H}\right.$, br $\mathrm{D}_{2} \mathrm{O}$ exchangeable NH$)$ (Found: C, 38.2; $\mathrm{H}, 6.5 ; \mathrm{N}, 4.9 . \mathrm{C}_{16} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{P}_{2} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$ requires C , 38.5 ; H, 6.7; N, 5.6%).

1-\{[2-(Diethoxyphosphorylmethyl)(ethoxy)phosphorylmethoxy] ethoxy\}cytosine 33. The compound was obtained as a gum in 76% yield [0.7 mmol scale using hydrochloric acid (1.4 mmol) in ethanol ($30 \mathrm{~cm}^{3}$)] after 2.5 h and chromatography eluting with chloroform-methanol (10:1) of increasing polarity to $(5: 1) ; v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3339,3167,2983,2933,2905,1644$, 1513, 1486 and 1445; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.36\left(9 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{3}\right), 2.50$ $\left(1 \mathrm{H}\right.$, ddd, $J_{\mathrm{H}, \mathrm{H}} 15, J_{\mathrm{H} . \mathrm{P}} 17.6$ and $J_{\mathrm{H}, \mathrm{P}} 20.6, \mathrm{H}_{\mathrm{B}}$ of $\left.\mathrm{PCH}_{2} \mathrm{P}\right), 2.58(1$ H , ddd, $J_{\mathrm{H} . \mathrm{H}} 15, J_{\mathrm{H}, \mathrm{P}} 17.2$ and $J_{\mathrm{H} . \mathrm{P}} 20.5, \mathrm{H}_{\mathrm{A}}$ of $\left.\mathrm{PCH}_{2} \mathrm{P}\right), 3.85(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{ON}\right), 4.00\left(2 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{PCH}_{2} \mathrm{O}\right), 4.20(6 \mathrm{H}, \mathrm{m}$, $\left.3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.4\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{ON}\right), 5.73(1 \mathrm{H}, \mathrm{d}, J 7.4,5-\mathrm{H})$, $6.21\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable $\left.\mathrm{NH}_{2}\right)$ and $7.74(1 \mathrm{H}, \mathrm{d}, J 7.4$, 6-H) (Found: C, 38.25; H, 6.2; N, 9.6. $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{P}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 38.5 ; \mathrm{H}, 6.5 ; \mathrm{N}, 9.6 \%$).
(R,S)-1-\{2-[(Diethoxyphosphorylmethyl)(ethoxy)phosphoryl-methoxy]-2-(hydroxymethyl)ethoxy\}cytosine 34. This compound was obtained as a gum in 67% yield $[0.8 \mathrm{mmol}$ scale using hydrochloric acid (3 mmol) in ethanol ($30 \mathrm{~cm}^{3}$)] after 2 h and chromatography eluting with chloroform-methanol (10:1) of increasing polarity to $(5: 1) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3338,3195$, 2983, 2920, 2906, 1645, 1514, 1487 and $1440 ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]$ $1.22\left(9 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{3}\right), 2.70\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2} \mathrm{P}\right), 3.52(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 3.68(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.9-4.3\left(10 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$, $\left.\mathrm{PCH}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{ON}\right), 5.59(1 \mathrm{H}, \mathrm{d}, J 7.6,5-\mathrm{H}), 7.16(1 \mathrm{H}$, br s, $\mathrm{D}_{2} \mathrm{O}$ exchangeable NH of $\left.\mathrm{NH}_{2}\right), 7.85$ and $7.87(1 \mathrm{H}, 2 \times \mathrm{d}, J$ $7.6,6-\mathrm{H}$) (Found: $\mathrm{M}^{+}, 457.1376 . \mathrm{C}_{15} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{P}_{2}$ requires M, 457.1379).
(R,S)-9\{2-[(Diethoxyphosphorylmethyl)(ethoxy)phosphoryl-methoxy]-2-(hydroxymethyl)ethoxy\}guanine 38. This compound was obtained as a foam in 78% yield [0.8 mmol scale using hydrochloric acid (5 mmol) in ethanol $\left(10 \mathrm{~cm}^{3}\right)$] after 4.5 h and chromatography eluting with chloroform-methanol (4:1); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3412,3160,2988,1693,1650,1609,1527$, 1475 and $1445 ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.20\left(9 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{3}\right), 2.75(2$ $\left.\mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2} \mathrm{P}\right), 3.55\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.75(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.9-$ $4.5\left(10 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{ON}, \mathrm{PCH}_{2} \mathrm{O}\right), 5.90(1 \mathrm{H}, \mathrm{t}, J$ 5.6, $\mathrm{D}_{2} \mathrm{O}$ exchangeable OH$), 6.71\left(2 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable $\left.\mathrm{NH}_{2}\right), 7.98$ and $8.00(1 \mathrm{H}, 2 \times \mathrm{s}, 8-\mathrm{H})$ and $10.77\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$
exchangeable NH) (Found: $\mathrm{C}, 36.9 ; \mathrm{H}, 5.5 ; \mathrm{N}, 13.1$. $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{9} \mathrm{P}_{2} \cdot 0.22 \mathrm{CHCl}_{3}$ requires $\mathrm{C}, 36.7 ; \mathrm{H}, 5.6 ; \mathrm{N}, 13.4 \%$).
(R,S)-9-\{2-[(Diethoxyphosphorylmethyl)(ethoxy)phosphoryl-methoxy]-2-(hydroxymethyl)ethoxy\}adenine 44. This compound was obtained as a glass in 95% yield [0.9 mmol scale using hydrochloric acid (2 mmol) in ethanol ($5 \mathrm{~cm}^{3}$)] after 2 h and chromatography eluting with chloroform-methanol ($10: 1$) of increasing polarity to $(5: 1) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3400,3214$, $2985,2928,2910,1653,1645,1636,1600,1475$ and 1414 ; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.23\left(9 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{3}\right), 2.74\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.5$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.80(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 4.05\left(8 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $4.50\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{ON}\right), 4.9\left(1 \mathrm{H}\right.$, br s, $\mathrm{D}_{2} \mathrm{O}$ exchangeable OH$)$, $7.55\left(2 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable $\left.\mathrm{NH}_{2}\right), 8.19(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$ and 8.33 and $8.49(1 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{CH})$ (Found: $\mathrm{C}, 35.9 ; \mathrm{H}, 5.6 ; \mathrm{N}, 13.3$. $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{P}_{2} \cdot \mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 35.9 ; \mathrm{H}, 6.0 ; \mathrm{N}, 13.1 \%$).

General Procedure for the Preparation of Compounds 3-12.A solution of compound $23,24,27,28,33,34,36,38,42$ or $44(1$ mmol) in dichloromethane or DMF was treated with trimethylsilyl bromide (20 mmol) under nitrogen and the solution was stirred at room temperature for 20 h . The solvent was removed under reduced pressure and the residue was evaporated to dryness three times with methanol ($20 \mathrm{~cm}^{3}$). The residue was chromatographed on reverse phase C_{18} silica gel, eluting with water.

1-\{2-[(Hydroxy)(phosphonomethyl)phosphorylmethoxy]ethoxy\}uracil 3. This compound was obtained as a foam in 67% yield $\left[0.5 \mathrm{mmol}\right.$ scale in dichloromethane $\left.\left(5 \mathrm{~cm}^{3}\right)\right] ; \lambda_{\text {max }}{ }^{-}$ $\left(\mathrm{H}_{2} \mathrm{O}\right) / \mathrm{nm} 266(\varepsilon 8930)$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3369,3259,3128$, 3093, 2947, 2905, 2890, 2862, 2813, 2245, 1711, 1674, 1481, 1460, 1434 and $1411 ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2.21(2 \mathrm{H}, \mathrm{dd}, J 17.1$ and 19.8, $\left.\mathrm{PCH}_{2} \mathrm{P}\right), 3.80\left(4 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{ON}\right), 4.25(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{ON}\right), 5.45(1 \mathrm{H}, \mathrm{d}, J 8.0,5-\mathrm{H}), 7.90\left(3 \mathrm{H}\right.$, br s, $3 \times \mathrm{D}_{2} \mathrm{O}$ exchangeable OH$), 7.97(1 \mathrm{H}, \mathrm{d}, J 8.0,6-\mathrm{H})$ and $11.47(1 \mathrm{H}, \mathrm{s}$, $\mathrm{D}_{2} \mathrm{O}$ exchangeable NH) (Found: $\mathrm{C}, 25.9 ; \mathrm{H}, 4.5 ; \mathrm{N}, 7.6$. $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{P}_{2} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 25.9 ; \mathrm{H}, 4.6 ; \mathrm{N}, 7.55 \%$).
(R,S)-1-\{2-[(Hydroxy)(phosphonomethyl)phosphorylmeth-oxy]-2-(hydroxymethyl)ethoxy\}uracil 4. This compound was obtained as a glass in 73% yield $[0.3 \mathrm{mmol}$ scale in dichloromethane $\left.\left(5 \mathrm{~cm}^{3}\right)\right] ; \quad i_{\max }\left(\mathrm{H}_{2} \mathrm{O}\right) / \mathrm{nm} \quad 266.5 \quad$ (ε 8440) (hygroscopic); $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3425,2961,2919,2339,1717$, 1685,1457 and $1420 ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2.23\left(2 \mathrm{H}, \mathrm{dd}, J_{1}=J_{2} 19\right.$, $\left.\mathrm{PCH}_{2} \mathrm{P}\right), 3.52\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2} \mathrm{O}\right), 3.70(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.88(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 4.2\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{ON}\right), 5.25\left(>4 \mathrm{H}\right.$, br s, $4 \times \mathrm{D}_{2} \mathrm{O}$ exchangeable OH plus $\left.\mathrm{H}_{2} \mathrm{O}\right), 5.46(1 \mathrm{H}$, dd, $J 2.0$ and $8.25,5-\mathrm{H})$, $8.03(1 \mathrm{H}, \mathrm{d}, J 8.25,6-\mathrm{H})$ and $11.47\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable NH) (Found: C, 27.9; $\mathrm{H}, 4.3 ; \mathrm{N}, 7.1 . \mathrm{C}_{9} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{P}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 28.2 ; \mathrm{H}, 4.5 ; \mathrm{N}, 7.3 \%$).

1-\{2-[(Hydroxy)(phosphonomethyl)phosphorylmethoxy]ethoxy $\}$ thymine 5. This compound was obtained as a glass in 68% yield [0.7 mmol scale in dichloromethane $\left.\left(5 \mathrm{~cm}^{3}\right)\right]$, and crystallised from methanol, m.p. $195-196{ }^{\circ} \mathrm{C}$; $\lambda_{\text {max }}\left(\mathrm{H}_{2} \mathrm{O}\right) / \mathrm{nm}$ 270 ($\varepsilon .9311$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3434,3177,3107$, 3071, 2996, 2973, 2948, 2909, 2251, 1739, 1642, 1616, 1476 and 1411; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.76\left(3 \mathrm{H}, \mathrm{d}, J 1.2,5-\mathrm{CH}_{3}\right), 2.21(2 \mathrm{H}, \mathrm{dd}, J$ 17.3 and $\left.19.5, \mathrm{PCH}_{2} \mathrm{P}\right), 3.75\left(4 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{ON}\right)$, $4.22\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{ON}\right), 6.40\left(>3 \mathrm{H}, \mathrm{br} \mathrm{s}, 3 \times \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable OH plus $\left.\mathrm{H}_{2} \mathrm{O}\right), 7.86(1 \mathrm{H}, \mathrm{q}, J 1.2,6-\mathrm{H})$ and 11.45 ($1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}$ exchangeable NH) (Found: $\mathrm{C}, 30.0 ; \mathrm{H}, 4.5 ; \mathrm{N}, 7.7$. $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{P}_{2}$ requires $\mathrm{C}, 30.2 ; \mathrm{H}, 4.5 ; \mathrm{N}, 7.8 \%$).
(R,S)-1-\{2-[(Hydroxy)(phosphonomethyl)phosporylmeth-oxy]-2-(hydroxymethyl)ethoxy\} thymine 6. This compound was obtained as a foam in 60% yield $[0.3 \mathrm{mmol}$ scale in dichloromethane $\left.\left(5 \mathrm{~cm}^{3}\right)\right] ; \quad \lambda_{\text {max }}\left(\mathrm{H}_{2} \mathrm{O}\right) / \mathrm{nm} \quad 271 \quad(\varepsilon \quad 8100)$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3418,3160,3052,2956,2890,2818,2298,1711$, 1678,1465 and $1460 ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.76(3 \mathrm{H}, \mathrm{d}, J 1.1$, $5-$ $\left.\mathrm{CH}_{3}\right), 2.23\left(2 \mathrm{H}, \mathrm{dd}, J_{1}=J_{2} 18.2, \mathrm{PCH}_{2} \mathrm{P}\right), 3.53(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{PCH}_{2} \mathrm{O}\right), 3.65(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.86\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.08(1 \mathrm{H}$,
dd, $J 7.0$ and $10.95, \mathrm{CH}$ of $\left.\mathrm{CH}_{2} \mathrm{ON}\right), 4.28(1 \mathrm{H}, \mathrm{dd}, J 3.0$ and 10.95 , CH of $\left.\mathrm{CH}_{2} \mathrm{ON}\right), 6.75\left(>4 \mathrm{H}\right.$, br s, $4 \times \mathrm{D}_{2} \mathrm{O}$ exchangeable OH plus $\left.\mathrm{H}_{2} \mathrm{O}\right), 7.92(1 \mathrm{H}, \mathrm{q}, J 1.1,6-\mathrm{H})$ and $11.45\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable OH) (Found: $\mathrm{C}, 29.6 ; \mathrm{H}, 5.1 ; \mathrm{N}, 6.8$. $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{P}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 29.6 ; \mathrm{H}, 5.0 ; \mathrm{N}, 6.9 \%$).

1-\{2-[(Hydroxy)(phosphonomethyl)phosphorylmethoxy]ethoxy\}cytosine 7. This compound was obtained as a foam in 91% yield $\left[0.3 \mathrm{mmol}\right.$ scale in dichloromethane $\left(5 \mathrm{~cm}^{3}\right)$; $\lambda_{\text {max }} / \mathrm{nm} 277$ ($\varepsilon 7220$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} \quad 3379$, 3114, 3073, $2923,2771,1734,1675,1539$ and $1460 ; \delta_{H}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2.20(2$ $\left.\mathrm{H}, \mathrm{dd}, J_{1}=J_{2} 22, \mathrm{PCH}_{2} \mathrm{P}\right), 3.75\left(4 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2} \mathrm{O}\right.$, and $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{ON}\right), 4.80\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{ON}\right), 5.4(>3 \mathrm{H}, \mathrm{br} \mathrm{s}$, $3 \times \mathrm{D}_{2} \mathrm{O}$ exchangeable OH plus $\left.\mathrm{H}_{2} \mathrm{O}\right), 5.77(1 \mathrm{H}, \mathrm{d}, J 7.7,5-\mathrm{H})$, $7.80\left(1 \mathrm{H}\right.$, br s, $\mathrm{D}_{2} \mathrm{O}$ exchangeable NH of $\left.\mathrm{NH}_{2}\right), 8.12(1 \mathrm{H}, \mathrm{d}, J$ $7.7,6-\mathrm{H})$ and $8.50\left(1 \mathrm{H}\right.$, br s, $\mathrm{D}_{2} \mathrm{O}$ exchangeable NH of $\left.\mathrm{NH}_{2}\right)$ (Found: C, 23.75; H, 4.6; N, 10.25, $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{P}_{2} \cdot 0.5 \mathrm{HBr}$ $\mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 23.9 ; \mathrm{H}, 4.4 ; \mathrm{N}, 10.5 \%$).
(R,S)-1-\{2-[(Hydroxy)(phosphonomethyl)phosphorylmeth-oxy]-2-(hydroxymethyl)ethoxy\}cytosine 8 . This compound was obtained as a very hygroscopic glass in 93% yield [0.4 mmol scale in dichloromethane $\left.\left(5 \mathrm{~cm}^{3}\right)\right] ; \lambda_{\text {max }}\left(\mathrm{H}_{2} \mathrm{O}\right) / \mathrm{nm} 274$ (ε 6855); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3390$, 3126, 2954, 2783, 1740, 1676, 1534 and $1430 ; \delta_{\mathrm{H}}$ (hydrobromide) $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2.24(2 \mathrm{H}$, dd, $\left.J_{1}=J_{2} 18, \mathrm{PCH}_{2} \mathrm{P}\right), 3.45\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2} \mathrm{O}\right), 3.73(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$, $3.87\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.30\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{ON}\right), 5.90(1 \mathrm{H}, \mathrm{d}, J 8$, $5-\mathrm{H}), 6.2\left(5 \mathrm{H}\right.$, br s, $4 \times \mathrm{D}_{2} \mathrm{O}$ exchangeable OH plus HBr$), 8.20$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}$ exchangeable NH of NH_{2}), $8.38(1 \mathrm{H}, \mathrm{d}, J 8,6-\mathrm{H})$ and $9.35\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable NH of $\left.\mathrm{NH}_{2}\right)$ (Found: C, 23.9; $\mathrm{H}, 3.6 ; \mathrm{N}, 9.1 . \mathrm{C}_{9} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{P}_{2} . \mathrm{HBr}$ requires $\mathrm{C}, 23.8 ; \mathrm{H}, 4.0$; N, 9.25).

9-\{2-[(Hydroxy)(phosphonomethyl)phosphorylmethoxy]ethoxy $\}$ guanine 9. This compound was obtained as a solid in 93% yield [0.6 mmol scale in dichloromethane $\left(10 \mathrm{~cm}^{3}\right)$], and crystallised from water, m.p. $263-264{ }^{\circ} \mathrm{C}$; $\lambda_{\text {max }} / \mathrm{nm} 253$ (ε 12760), 267sh; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3382,3328,3174,3150,2905$, $2748,2328,1718,1652,1596,1544,1480,1460$ and 1413 ; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2.20\left(2 \mathrm{H}\right.$, dd, $J 17.4$ and $\left.19.2, \mathrm{PCH}_{2} \mathrm{P}\right), 3.80(4$ $\mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{ON}$ plus $\left.\mathrm{PCH}_{2} \mathrm{O}\right), 4.38\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{ON}\right), 6.60$ (2 H , br s, $\mathrm{D}_{2} \mathrm{O}$ exchangeable NH_{2}), $7.97(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$ and $10.6(1$ $\mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}$ exchangeable NH) (Found: C, 28.4; $\mathrm{H}, 4.3 ; \mathrm{N}, 18.6$. $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{P}_{2}$ requires $\mathrm{C}, 28.2 ; \mathrm{H}, 3.95 ; \mathrm{N}, 18.3 \%$).
(R,S)-9-\{2-[(Hydroxy)(phosphonomethyl)phosphorylmeth-oxy]-2-(hydroxymethyl)ethoxy \}guanine 10.- This compound was obtained as a solid in 32% yield [0.2 mmol scale in DMF (5 $\left.\mathrm{cm}^{3}\right)$] m.p. $\quad>300^{\circ} \mathrm{C} ; \quad \lambda_{\text {max }}\left(\mathrm{H}_{2} \mathrm{O}\right) / \mathrm{nm} \quad 253 \quad(\varepsilon \quad 12300)$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3391,3162,2910,2748,1716,1648$ and 1596 ; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2.25\left(2 \mathrm{H}, \mathrm{dd}, J_{1}=J_{2} 18, \mathrm{PCH}_{2} \mathrm{P}\right), 3.55(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{PCH}_{2} \mathrm{O}\right), 3.71(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.90\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.35(2$ $\left.\mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{ON}\right), 5.4\left(>4 \mathrm{H}\right.$, br s, $4 \times \mathrm{D}_{2} \mathrm{O}$ exchangeable OH plus $\left.\mathrm{H}_{2} \mathrm{O}\right), 6.67\left(2 \mathrm{H}\right.$, br s, $\mathrm{D}_{2} \mathrm{O}$ exchangeable $\left.\mathrm{NH}_{2}\right)$ and 8.01 (1 $\mathrm{H}, \mathrm{s}, \mathrm{CH}), 10.65\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable NH) (Found: C, $27.8 ; \mathrm{H}, 4.0 ; \mathrm{N}, 16.2 . \mathrm{C}_{10} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{9} \mathrm{P}_{2} \cdot 0.75 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 28.1$; H, 4.4, N, 16.4%).
9-\{2-[(Hydroxy)(phosphonomethyl)phosphorylmethoxy]ethoxy\} adenine 11. This compound was obtained as a solid in 61% yield [0.2 mmol scale in dichloromethane $\left(5 \mathrm{~cm}^{3}\right)$], m.p. $205-207{ }^{\circ} \mathrm{C} ; \lambda_{\text {max }}\left(\mathrm{H}_{2} \mathrm{O}\right) / \mathrm{nm} 259(\varepsilon 13100) ; v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3435$, $3119,2919,2369,1695,1685,1605,1588,1496,1482,1456$ and $1415 ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2.26\left(2 \mathrm{H}, \mathrm{dd}, J 17.3\right.$ and $\left.19.5, \mathrm{PCH}_{2} \mathrm{P}\right), 3.85$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{ON}\right), 4.55\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{ON}\right), 6.6(5 \mathrm{H}$, br s, $3 \times \mathrm{D}_{2} \mathrm{O}$ exchangeable OH plus $\mathrm{H}_{2} \mathrm{O}$), $7.55\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable NH_{2}) and $8.21(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$ (Found: C, 27.8; H, 4.2; $\mathrm{N}, 17.9 . \mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{P}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ requires C, $28.1 ; \mathrm{H}, 4.45 ; \mathrm{N}, 18.2 \%$).

9-\{2-[(Hydroxy)(phosphonomethyl)phosphorylmethoxy]-2(hydroxymethyl)ethoxy\}adenine 12. This compound was obtained as a foam in 73% yield $\left[0.7 \mathrm{mmol}\right.$ scale in DMF $\left.\left(5 \mathrm{~cm}^{3}\right)\right]$; $\lambda_{\text {max }} / \mathrm{nm} 260$ ($\varepsilon \quad 12660$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3350,3090,2955$, $2910,1697,1612,1468$ and $1413 ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2.26(2 \mathrm{H}, \mathrm{dd}$,
$J 17.6$ and 19.5, $\left.\mathrm{PCH}_{2} \mathrm{P}\right), 3.56\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2} \mathrm{O}\right), 3.78(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}), 3.91\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.47\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{ON}\right), 4.8(>4 \mathrm{H}$, s, $4 \times \mathrm{D}_{2} \mathrm{O}$ exchangeable OH plus $\left.\mathrm{H}_{2} \mathrm{O}\right), 7.58\left(2 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable NH_{2}) and $8.19(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 8.52(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$ (Found: C, 29.5; H, 4.4; N, 17.1. $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{P}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 29.6 ; \mathrm{H}, 4.5 ; \mathrm{N}, 17.2 \%$).

Acknowledgements

The author thanks Mr. M. R. Boyd, Dr. R. M. Perkins and their colleagues for carrying out the antiviral tests and Dr. M. R. Harnden for his interest and helpful discussions.

References

1 C. K. Chu and S. J. Cutler, J. Heterocycl. Chem., 1985, 23, 289.
2 R. J. Remy and J. A. Secrist III, Nucleosides, Nucleotides, 1985, 4, 411.
3 M. R. Boyd, T. H. Bacon, D. Sutton and M. Cole, Antimicroh. Agents Chemother., 1987, 31, 1238.
4 M. R. Harnden, S. Bailey, M. R. Boyd, M. Cole, R. L. Jarvest and P. G. Wyatt. Topics in Medicinal Chemistry (Proceedings of 4 th SCIRSC Medicinal Chemistry Simposium), ed. P. R. Leeming, 1988, 213.
5 M. R. Harnden. P. G. Wyatt, M. R. Boyd and D. Sutton. J. Med. Chem., 1990, 33, 187.
6 S. Bailey, M. R. Harnden, R. L. Jarvest. A. Parkin and M. R. Boyd. J. Med. Chem.. 1991. 34, 57.
7 G. B. Elion, P. A. Furman, J. A. Fyfe, P. De Miranda, L. Beauchamp and H. J. Schaeffer. Proc. Natl. Acad. Sci, USA, 1977, 74. 5716.
8 R. A. Vere Hodge and R. M. Perkins, Antimicrob. Agents Chemother.. 1989, 33, 223.
9 K. Stenberg, M. Lundstrom, S. Olofsson and R. Datema, Biochem. Pharmacol., 1988, 37, 1925.
10 R. K. Robins, Pharm. Res., 1984, 11.
11 E. De Clercq, A. Holy, I. Rosenberg, T. Sakuma. J. Balzarini and P. C. Mandgal, Noture, 1986, 323, 464.

12 A. Holy and I. Rosenberg, Collect. Ceech. Chem. Commun., 1987. 52. 2775.

13 E. De Clercq, T. Sakuma, M. Baba, R. Pauwels, J. Balzarini, I. Rosenberg and A. Holy, Amiciral Research, 1987, 8, 261.

14 E. De Clercq, Drugs. Exptl. Clin. Res., 1990, 17. 319.
15 J. Balzarini, L. Naesens, P. Herdewijn, I. Rosenberg, A. Holy, R. Pauwels, M. Baba, D. G. Johns and E. De Clerca, Proc. Natl. Acad. Sci. USA, 1989, 86, 332.
16 J. Cerny, I. Votruba, V. Vonka, I. Rosenberg, M. Otmar and A. Holy, Anticiral Research, 1990, 13, 253.
17 D. M. Duckworth and M. R. Harnden, Eur. Pat., 0319228A2.
18 D. M. Duckworth, M. R. Harnden, R. M. Perkins and D. N. Planterose. Nucleosides, Nucleotides, 1991, 10, 427.
19 D. M. Duckworth, M. R. Harnden, R. M. Perkins and D. N. Planterose, Antitiral Chem. Chemother., in the press.
20 M. R. Harnden, L. J. Jennings, and A. Parkin, Synthesis, in the press.
21 C. E. McKenna, L. A. Khawli, A. Bapat, V. Harutunian and Y.-C. Cheng, Biochem. Pharmacol., 1987. 36. 3103.
22 H. Griengl, W. Hayden, G. Penn, E. De Clercq and B. Rosenwirth, J. Med. Chem., 1988, 31, 1831.

23 R. W. McClard and S. A. Jackson, Phosphorus and Sulfur. 1988, 39, 27.
24 M. H. B. Stowell, J. F. Witte and R. W. McClard, Tetrahedron Lett., 1989, 30. 411.
25 R. W. McClard, T. S. Fujita, K. E. Stremler and C. D. Poulter, J. Am. Chem. Soc., 1987, 109, 5544.
26 S. A. Biller, C. Forster, E. M. Gordon, T. Harrity, W. A. Scott and C. P. Ciosek Jr., J. Med. Chemı, 1988, 31, 1869.

27 M. J. Robins and P. W. Hatfield, Can. J. Chem., 1982, 60, 547.
28 Z. S. Novikova, A. A. Prischenko and I. F. Lutsenko. Zh. Obshch. Khim.. 1977, 47, 775.
29 W. Klotzer, Monatsch. Chem., 1964, 95, 1729.
30 W. Klotzer and M. Herberz, Monatsch. Chem.. 1965, 96, 1721.
31 W. L. Sung, J. Chem. Soc., Chem. Commun., 1981, 1089.
32 K. J. Divikar and C. B. Reese, J. Chem. Soc., Perkin Trans. I, 1982, 1171.

33 M. R. Harnden, L. J. Jennings and A. Parkin, J. Chem. Soc., Perkin Trans. I, 1990, 2175.
34 W. Klotzer, Monatsch. Chem., 1965, 96, 169.
35 M. R. Harnden and P. G. Wyatt, Tetrahedron Letr., 1990, 31, 2185.

